China supplier China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry straight bevel gear

Product Description

Product Description

Name CNC machine plastic parts
Material Nylon,PEEK,PI,PEI,PU,PA6,POM,PE,UPE,PTFE,ABS,PC,PP,PS,PMMA,PBT,PVC,PA66,PA66+30%GF,TPE. Etc. 
Color White, black, green, nature, blue, yellow, etc.
Condition In stock/ Made to order
Style  Injection molding , Compression molding 
Shape As per your drawing
Physical Properties Physical Properties of Common Engineering Plastics
Other Shape Sheet, rod, tube, gear, rack, pulley, guide rail, plastics fittings, and so on
Packing Plastic bags, Cartons, Wooden case, Pallet, Container, etc.
Other Shipping status notification during delivery.
Regular notification of new styles & hot selling styles.
Feature: Good abrasion resistance
Application Industry, medical and pharmaceutical, semiconductor, photovoltaic energy, chemical electronics, communications Etc.  
Sample  General free sample ,Normally is USD 30~110 per Style If Special Design We Need Sample Charge, and we will Refund when You Have Official Bulk Order.
Sample time  General 3-7 days after got your drawing and payment 
Delivery  By Air or Sea. If Choose by Air, it is Faster Like You Purchase from the Local Market.

Detailed Photos

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry  

Company Profile

HangZhou CHINAMFG rubber & Plastic Products Co. , Ltd. was founded in 2015, formerly known as HangZhou Xihu (West Lake) Dis. Rubber Factory was founded in 1976, is a scientific research, production and sales of modern enterprises. The company is located in the outskirts of HangZhou, the ancient capital of the 6 dynasties, the emperor Ganlong praised as “Xihu (West Lake) Dis. Holy Land” of Xihu (West Lake) Dis. District, is the national professional industrial rubber plate production base.

The company’s main products are industrial rubber sheet, Special Industrial Rubber Sheet, non-slip Rubber Sheet, CHINAMFG Rubber Mat, insulating rubber sheet, waterproof rubber sheet, rubber lining, door and window sealing strip, CHINAMFG foam sponge strip, rubber mould products and moulds, PTFE and Nylon Plate, PTFE and Nylon Rod, PTFE and nylon accessories.

With strong Technical Force, a high-level professional research team, and with the relevant universities, scientific research institutes to maintain long-term cooperation and exchange, continue to develop new products to meet the needs of different users. And strictly in accordance with national standards and user requirements, combining enterprise ISO9 tons 1 year .

2.Is your company governmental or private?
It is a private company.

3. How many employees in your company?How many for production,and how many office people?
There are about 1000 employees. 900 for production, and 100 for office people.

4. How many tons can you produce each day?How many containers do you export every month?
We can produce 100 tons each day,and for exporting 500 containers around.

5. What’s your annual sales volume?
Around 35 millions US dollar.

6. How do you control your quality?
We inspect 3 steps:raw material inspection,during production inspection and before warehousing inspection.

7. How often do you inspect your products?
For physical testing,we test every batch,it’s about every 1 hundred meters.
For the surface and size,we check every roll after production and before warehousing.

8. Can you print our logo on the rubber sheet or package bags?
Yes,we can print the logo as customer’s design.

9. What’s your product guarantee period?
Under the condition in the warehouse,we can guarantee 2 years no cracks even on our lowest grade product.On used products,it should depend on the using condition.

10. What certificate have you passed?
Our factory has passed ISO9001.Our product has passed reach standard testing,and SGS certificate.

11. What about the payment ?
TT     LC     cash

12. Is OEM available ?
We can produce as customer ideas.

13. How to deal with the faulty products once we got ?
First ,find the reason ,it is the products problem or damaged by the transportation ,no matter what the reason is ,we will change a new part .

14.How to check the quality before shipment ?
You can come to check by yourself, your friend or the third checking institution. Also can by video.

15. Is sample available ?
We can arrange free sample , but the international courier charge is by your side .

Products application

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry   

Factory environment

some other products

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry 
China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry  

Company other products : 

1. Industrial Rubber sheet : SBR, NBR,CR, EPDM,Silicone,Viton, Nature,Fireproof ,waterproof , ESD, insulation  rubber sheet 

2. Gym rubber floor : granular rubber tile , dog bone rubber tile , CHINAMFG rubber rolls 

3. OEM Rubber parts 

4. door and window sealing strip 

5. CNC plastic products 

product-group/xohfkSQYvLWP/Plastic-productions-catalog-1.html
 

 

Plastic Type: Thermosetting Plastic
Plastic Form: Granule
Molding Method: Compression Molding
Color: White, Blue, Red, Green, Brown, Yellow, Nature
Material: Nylon, PA, POM, PE, Upe, PTFE, PVC, ABS
Physical Properties: Physical Properties of Common Engineering Plastics
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

How do you calculate the efficiency of a spur gear?

Calculating the efficiency of a spur gear involves considering the power losses that occur during gear operation. Here’s a detailed explanation:

In a gear system, power is transmitted from the driving gear (input) to the driven gear (output). However, due to various factors such as friction, misalignment, and deformation, some power is lost as heat and other forms of energy. The efficiency of a spur gear represents the ratio of the output power to the input power, taking into account these power losses.

Formula for Calculating Gear Efficiency:

The efficiency (η) of a spur gear can be calculated using the following formula:

η = (Output Power / Input Power) × 100%

Where:

η is the efficiency of the gear system expressed as a percentage.

Output Power is the power delivered by the driven gear (output) in the gear system.

Input Power is the power supplied to the driving gear (input) in the gear system.

Factors Affecting Gear Efficiency:

The efficiency of a spur gear is influenced by several factors, including:

  • Tooth Profile: The tooth profile of the gear affects the efficiency. Well-designed gear teeth with accurate involute profiles can minimize friction and power losses during meshing.
  • Lubrication: Proper lubrication between the gear teeth reduces friction, wear, and heat generation, improving gear efficiency. Insufficient or inadequate lubrication can result in increased power losses and reduced efficiency.
  • Gear Material: The selection of gear material affects efficiency. Materials with low friction coefficients and good wear resistance can help minimize power losses. Higher-quality materials and specialized gear coatings can improve efficiency.
  • Gear Alignment and Meshing: Proper alignment and precise meshing of the gear teeth are essential for optimal efficiency. Misalignment or incorrect gear meshing can lead to increased friction, noise, and power losses.
  • Bearing Friction: The efficiency of a gear system is influenced by the friction in the bearings supporting the gear shafts. High-quality bearings with low friction characteristics can contribute to improved gear efficiency.
  • Load Distribution: Uneven load distribution across the gear teeth can result in localized power losses and reduced efficiency. Proper design and gear system configuration should ensure even load distribution.

Interpreting Gear Efficiency:

The calculated gear efficiency indicates the percentage of input power that is effectively transmitted to the output. For example, if a gear system has an efficiency of 90%, it means that 90% of the input power is converted into useful output power, while the remaining 10% is lost as various forms of power dissipation.

It’s important to note that gear efficiency is not constant and can vary with operating conditions, lubrication quality, gear wear, and other factors. The calculated efficiency serves as an estimate and can be influenced by specific system characteristics and design choices.

By considering the factors affecting gear efficiency and implementing proper design, lubrication, and maintenance practices, gear efficiency can be optimized to enhance overall gear system performance and minimize power losses.

spur gear

How do you prevent backlash and gear play in a spur gear mechanism?

Preventing backlash and gear play is crucial for maintaining the accuracy, efficiency, and smooth operation of a spur gear mechanism. Here’s a detailed explanation of how to prevent backlash and gear play in a spur gear mechanism:

  • Precision Gear Design: Ensure that the spur gears used in the mechanism are designed with precision and manufactured to tight tolerances. Accurate tooth profiles, proper tooth spacing, and correct gear meshing are essential to minimize backlash and gear play.
  • Adequate Gear Tooth Contact: Optimize the gear meshing by ensuring sufficient tooth contact between the mating gears. This can be achieved by adjusting the center distance between the gears, selecting appropriate gear module or pitch, and ensuring proper gear alignment.
  • Proper Gear Engagement Sequence: In multi-gear systems, ensure that the gears engage in a proper sequence to minimize backlash. This can be achieved by using idler gears or arranging the gears in a way that ensures sequential engagement, reducing the overall amount of play in the system.
  • Backlash Compensation: Implement backlash compensation techniques such as preloading or using anti-backlash devices. Preloading involves applying a slight tension or compression force on the gears to minimize the free movement between the gear teeth. Anti-backlash devices, such as split gears or spring-loaded mechanisms, can also be used to reduce or eliminate backlash.
  • Accurate Gear Alignment: Proper alignment of the gears is critical to minimize gear play. Ensure that the gears are aligned concentrically and parallel to their respective shafts. Misalignment can result in increased backlash and gear play.
  • High-Quality Bearings: Use high-quality bearings that provide precise support and minimize axial and radial play. Proper bearing selection and installation can significantly reduce gear play and improve the overall performance of the gear mechanism.
  • Appropriate Lubrication: Ensure that the gears are properly lubricated with the correct type and amount of lubricant. Adequate lubrication reduces friction and wear, helping to maintain gear meshing accuracy and minimize backlash.
  • Maintain Proper Gear Clearances: Check and maintain the appropriate clearances between the gears and other components in the gear mechanism. Excessive clearances can lead to increased gear play and backlash. Regular inspections and adjustments are necessary to ensure optimal clearances.
  • Regular Maintenance: Implement a regular maintenance schedule to inspect, clean, and lubricate the gear mechanism. This helps identify and rectify any issues that may contribute to backlash or gear play, ensuring the gear system operates at its best performance.

By following these practices, it is possible to minimize backlash and gear play in a spur gear mechanism, resulting in improved precision, efficiency, and reliability of the system.

It’s important to note that the specific techniques and approaches to prevent backlash and gear play may vary depending on the application, gear type, and design requirements. Consulting with gear manufacturers or specialists can provide further guidance on addressing backlash and gear play in specific gear mechanisms.

spur gear

What is a spur gear and how does it work?

A spur gear is a type of cylindrical gear with straight teeth that are parallel to the gear axis. It is one of the most common and simplest types of gears used in various mechanical systems. Spur gears work by meshing together to transmit rotational motion and torque between two parallel shafts. Here’s a detailed explanation of spur gears and how they work:

A spur gear consists of two or more gears with cylindrical shapes and an equal number of teeth. These gears are mounted on parallel shafts, and their teeth mesh together to transfer rotational motion from one gear to another. The gear with power input is called the “drive gear” or “driver,” while the gear receiving the power output is called the “driven gear” or “follower.”

The key characteristics and components of spur gears include:

  • Teeth: Spur gears have straight teeth that are cut parallel to the shaft axis. The teeth are evenly spaced around the circumference of the gear. The number of teeth determines the gear ratio and affects the speed and torque transmission between the gears.
  • Pitch Diameter: The pitch diameter is the theoretical diameter of the gear at the point where the teeth mesh. It is determined by the number of teeth and the module or diametral pitch of the gear.
  • Module or Diametral Pitch: The module is a parameter used in metric gear systems, while the diametral pitch is used in imperial gear systems. They define the tooth size and spacing of the gear. The module is the ratio of the pitch diameter to the number of teeth, while the diametral pitch is the number of teeth per inch of pitch diameter.
  • Pressure Angle: The pressure angle is the angle between the line tangent to the tooth profile at the pitch point and a line perpendicular to the gear axis. Common pressure angles for spur gears are 20 degrees and 14.5 degrees.
  • Meshing: Spur gears mesh by engaging their teeth, creating a point or line contact between the contacting surfaces. The teeth transfer rotational motion and torque from the drive gear to the driven gear.
  • Gear Ratio: The gear ratio is determined by the number of teeth on the drive gear and the driven gear. It defines the relationship between the input speed and the output speed. The gear ratio can be calculated by dividing the number of teeth on the driven gear by the number of teeth on the drive gear.
  • Operation: As the drive gear rotates, its teeth come into contact with the teeth of the driven gear. The contact between the teeth transfers rotational motion and torque from the drive gear to the driven gear. The meshing teeth maintain a constant speed ratio, allowing for the transmission of power between the shafts. The direction of rotation can be changed by meshing gears with an odd or even number of teeth.

Spur gears offer several advantages, including simplicity, ease of manufacture, efficiency, and reliability. They are commonly used in a wide range of applications, including machinery, automotive systems, appliances, power tools, and more.

In conclusion, spur gears are cylindrical gears with straight teeth that mesh together to transfer rotational motion and torque between parallel shafts. Their simple and efficient design makes them a popular choice for various mechanical systems.

China supplier China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry straight bevel gearChina supplier China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry straight bevel gear
editor by CX 2023-11-01