China Standard High Precision Standard Special Stainless Steel Spur Gear Aluminum Metric Steering Spline Shaft Pinion Wheel Hobbing CNC OEM cycle gear

Product Description

High Precision Standard Special Stainless Steel Spur Gear Aluminum Metric Steering
Spline Shaft Pinion Wheel Hobbing CNC OEM

Material  1) Aluminum: AL 6061-T6, 6063, 7075-T etc.
 2) Stainless steel: 303, 304, 316L, 17-4(SUS630) etc.
 3) Steel: 4140, Q235, Q345B, 20#, 45# etc.
 4) Titanium: TA1, TA2/GR2, TA4/GR5, TC4, TC18 etc.
 5) Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc.
 6) Copper, Bronze, Magnesium alloy, Delrin, POM, Acrylic, PC, etc.
Finsh  Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish.
 Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing.
 Electroplating chromium, Electrophoresis, QPQ(Quench-Polish-Quench).
 Electro Polishing, Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment  CNC machining center(Milling), CNC Lathe, Grinding machine.
 Cylindrical grinder machine, Drilling machine, Laser cutting machine, etc.
Drawing format  STEP, STP, GIS, CAD, PDF, DWG, DXF etc or samples.
Tolerance  +/-0.01mm ~ +/-0.05mm
Surface roughness  Ra 0.1~3.2
Inspection  Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier, CMM.
 Depth Caliper Vernier, Universal Protractor, Clock Gauge, Internal Centigrade Gauge.
Capacity  CNC turning work range: φ0.5mm-φ150mm*300mm.
 CNC milling work range: 510mm*1571mm*500mm.

About Runsom
    Runsom, a company specializing in rapid prototyping and manufacturing, has decades of experience in
CNC machining, 3D printing, injection molding, sheet metal fabrication, and die casting. Our engineering
team with extensive knowledge and experience utilizes the latest prototyping technologies and top-notch
machining equipment to provide comprehensive services to satisfy global customers’ requirements,
timescales, and specific needs. We are able to take your concepts or designs to reality production in just
days with our advanced machining technologies, extensive manufacturing experience, and a wealth of
premium materials.

Our Mission
   Runsom Precision was established to give support to companies in the industries fields who continually
need to reduce their costs and meet tight deadlines. Our purpose is to ensure customer satisfaction by
providing first-class project management control and problem-free products.

                                                                                               Get a Quote

Q1: What’s kinds of information you need for quote?
A1: Kindly please provide the 2D/3D drawings (PDF/DWG/DXF/IGS/STP/SLDPRT/etc) and advise material
, finish, quantity for quoting.

Q2: What is your MOQ?
A2: MOQ depends on our client’s needs, besides, we welcome trial order before mass-production.

Q3: What is the lead time?
A3: Depending on your specific project and quantity.

Q4: Available for customized design drawings?
A4: Yes, please send the technical drawings to us. It’s better if you can send both 2D and 3D drawings if
you have.

Q5: If the parts we purchase from your company are not good, what can we do?
A5: Please feel free to contact us after you got the products. Kindly send us some photos, we will
feedback to our engineers and QC departments and solve the problems ASAP.

Q6: Are you a manufacturer or trading company?
A6: We are a manufacturer, we are located in HangZhou, China.

Q7: Will my drawings be safe after sending to you?
A7: Yes, we will keep them well and not release to third party without your permission.

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Auto,Motorcycle,Aviation,Electonic,Medical,Home
Hardness: According to The Drawing
Gear Position: According to The Drawing
Manufacturing Method: Machining,Milling,Turning,5axis,etc
Toothed Portion Shape: Custom
Material: Aluminum,Steel,Brass,Hardware,etc
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

What are the benefits of using a spur gear mechanism?

Using a spur gear mechanism offers several benefits in various applications. Here’s a detailed explanation of the advantages of using a spur gear mechanism:

  • Simplicity: Spur gear mechanisms are relatively simple in design, consisting of cylindrical gears with straight teeth. Their simplicity makes them easy to manufacture, assemble, and maintain. They have fewer components compared to other types of gear mechanisms, resulting in lower complexity and potentially reduced costs.
  • Efficiency: Spur gears exhibit high efficiency in power transmission. The teeth of spur gears mesh directly, resulting in minimal energy loss during transmission. The simplicity of their tooth profile allows for efficient power transfer, making them an energy-efficient choice for many applications.
  • Compactness: Spur gears have a compact design, making them suitable for applications where space is limited. They can be arranged in-line, parallel to each other, or at right angles using additiospur gear

    What is the purpose of using spur gears in machinery?

    In machinery, spur gears serve several important purposes due to their unique characteristics and capabilities. Here’s a detailed explanation of the purpose of using spur gears in machinery:

    1. Power Transmission: Spur gears are primarily used for power transmission in machinery. They transfer rotational motion and torque from one shaft to another, allowing machinery to perform various tasks. By meshing the teeth of two or more spur gears together, power can be transmitted efficiently and reliably throughout the machinery.
    2. Speed Reduction or Increase: Spur gears enable speed reduction or increase in machinery. By combining gears with different numbers of teeth, the rotational speed can be adjusted to match the desired output speed. For example, using a larger gear driving a smaller gear can increase the speed output while reducing the torque, while the opspur gear

      Can spur gears be used in heavy-duty machinery and equipment?

      Yes, spur gears can be used in heavy-duty machinery and equipment. Here’s a detailed explanation:

      Spur gears are versatile and commonly used in a wide range of applications, including heavy-duty machinery and equipment. They are known for their simplicity, efficiency, and ability to transmit high loads and torque. Spur gears have straight teeth that are parallel to the gear axis, allowing for effective power transmission between parallel shafts.

      Advantages of Spur Gears in Heavy-Duty Applications:

      Spur gears offer several advantages that make them suitable for heavy-duty machinery and equipment:

      • High Load Capacity: Spur gears are capable of handling high loads due to their robust tooth design and larger contact area compared to other gear types. They distribute the load evenly across the gear teeth, minimizing stress concentration and ensuring reliable operation in heavy-duty applications.
      • Efficient Power Transmission: Spur gears have high gear meshing efficiency, typically above 95%. This means that a large percentage of the input power is effectively transmitted to the output, making them suitable for heavy-duty machinery where power transfer is critical.
      • Wide Range of Sizes and Ratios: Spur gears are available in a wide range of sizes, tooth counts, and gear ratios. This versatility allows for customization and adaptation to the specific requirements of heavy-duty machinery and equipment.
      • Cost-Effective: Spur gears are relatively simple in design and easier to manufacture compared to some other gear types. This simplicity often translates into cost-effectiveness, making them an attractive choice for heavy-duty applications where cost considerations are important.
      • Easy Maintenance: Spur gears are generally easier to maintain compared to gears with complex tooth profiles or specialized designs. Routine maintenance tasks such as lubrication, inspection, and replacement of worn gears can be carried out more straightforwardly, minimizing downtime and maintenance costs.

      Considerations for Heavy-Duty Applications:

      While spur gears can be used in heavy-duty machinery and equipment, certain considerations should be taken into account:

      • Load Distribution: Proper load distribution is critical to ensure the longevity and reliability of spur gears in heavy-duty applications. It is important to design the gear system in a way that distributes the loads evenly across the gear teeth, minimizing the risk of tooth breakage or premature wear.
      • Material Selection: The selection of gear materials is crucial in heavy-duty applications. The gear material should have the necessary strength, hardness, and fatigue resistance to withstand the anticipated loads and operating conditions. Common materials used for heavy-duty spur gears include alloy steels, case-hardened steels, and specialized gear materials such as carburized or nitrided steels.
      • Lubrication and Cooling: Adequate lubrication is essential to minimize friction, wear, and heat generation in heavy-duty spur gears. Proper lubrication techniques and the use of high-quality lubricants can significantly extend the gear’s service life. In some cases, additional cooling measures such as circulating oil systems or forced-air cooling may be necessary to manage heat buildup in heavy-duty applications.
      • Mechanical Considerations: The overall mechanical design of the heavy-duty machinery should account for gear alignment, shaft deflection, and other factors that can affect gear performance. Robust support structures, accurate alignment, and consideration of potential misalignments due to operational conditions should be taken into account during the design phase.

      By addressing these considerations and implementing proper design, material selection, lubrication, and maintenance practices, spur gears can effectively withstand the demands of heavy-duty machinery and equipment.

      It’s important to note that the specific application requirements, operating conditions, and load characteristics may vary. Consulting with gear manufacturers, engineers, or industry experts can provide further guidance on the suitability and design considerations when using spur gears in heavy-duty applications.

      posite arrangement can decrease the speed while increasing the torque.

    3. Torque Amplification: Spur gears can amplify torque in machinery. By using gears with different numbers of teeth, the torque can be adjusted to match the required output. For example, using a smaller gear driving a larger gear can increase the torque output while reducing the speed, while the opposite arrangement can decrease the torque while increasing the speed.
    4. Directional Control: Spur gears provide directional control in machinery. By meshing gears with opposite orientations, the rotational direction of the driven shaft can be reversed or changed. This directional control is crucial for machinery that requires bi-directional motion or needs to change the direction of operation.
    5. Mechanical Advantage: Spur gears offer a mechanical advantage in machinery. By utilizing gear ratios, spur gears can multiply or divide the force exerted on the input shaft. This mechanical advantage allows machinery to generate higher forces or achieve precise movements with reduced effort.
    6. Precision Positioning: Spur gears facilitate precise positioning in machinery. The accurate tooth engagement of spur gears ensures precise control over rotational motion, making them suitable for applications that require precise positioning or synchronization of components. Machinery such as CNC machines, robotics, and automation systems often rely on spur gears for accurate movement and positioning.
    7. Compact Design: Spur gears have a compact design, making them suitable for machinery with space constraints. They can be arranged in-line, parallel, or at right angles, allowing for efficient power transmission in tight spaces. Their compactness enables machinery to be designed with smaller footprints and optimized layouts.
    8. Reliability and Durability: Spur gears are known for their reliability and durability in machinery. The direct tooth engagement and uniform load distribution result in efficient power transmission with reduced wear and stress concentration. When properly lubricated and maintained, spur gears can withstand heavy loads and operate reliably over extended periods.
    9. Cost-Effectiveness: Spur gears are often cost-effective in machinery applications. Their simple design and ease of manufacturing contribute to lower production costs. Additionally, their high efficiency helps reduce energy consumption, resulting in potential long-term cost savings. The availability of spur gears in various sizes and materials further enhances their cost-effectiveness.

    By utilizing spur gears in machinery, engineers and designers can achieve efficient power transmission, speed and torque control, directional versatility, mechanical advantage, precise positioning, compact design, reliability, durability, and cost-effectiveness. These advantages make spur gears a popular choice in a wide range of machinery applications across industries.

    nal components such as bevel gears. This flexibility in arrangement allows for efficient power transmission in tight spaces.

  • Versatility: Spur gears are versatile and can be used in a wide range of applications. They are available in various sizes, configurations, and materials, allowing them to be tailored to specific needs. Spur gears can handle different torque and speed requirements, making them suitable for both low and high-speed applications.
  • High-Speed Capability: Spur gears can achieve high rotational speeds due to their straightforward design and direct tooth engagement. They are capable of transmitting power efficiently at high speeds, making them suitable for applications that require rapid motion or high rotational velocities.
  • Precise Positioning: Spur gears provide accurate positioning due to their precise tooth engagement. The straight teeth allow for precise control of rotational motion, making them suitable for applications that require precise positioning, such as robotics, machinery, and automation systems.
  • Cost-Effectiveness: Spur gears are often cost-effective compared to other gear mechanisms. Their simple design and ease of manufacturing contribute to lower production costs. Additionally, their high efficiency helps reduce energy consumption, resulting in potential long-term cost savings.
  • Reliability: Spur gears are known for their reliability and durability. The direct tooth engagement provides excellent load distribution, minimizing stress concentration and wear. When properly lubricated and maintained, spur gears can operate reliably for extended periods, making them suitable for demanding industrial applications.
  • Wide Availability: Spur gears are widely available in the market, with various sizes, materials, and configurations to choose from. This availability ensures easy sourcing and replacement of gears when needed. Additionally, spur gears have been used for many years and have a well-established design and manufacturing process, leading to a robust supply chain.

These benefits make spur gear mechanisms a popular choice in numerous industries, including automotive, machinery, robotics, aerospace, appliances, and more. Their simplicity, efficiency, compactness, versatility, and reliability contribute to their widespread use in a wide range of applications.

China Standard High Precision Standard Special Stainless Steel Spur Gear Aluminum Metric Steering Spline Shaft Pinion Wheel Hobbing CNC OEM cycle gearChina Standard High Precision Standard Special Stainless Steel Spur Gear Aluminum Metric Steering Spline Shaft Pinion Wheel Hobbing CNC OEM cycle gear
editor by CX 2023-09-01