China Professional ISO/Ts16949 OEM Sintered Gear for Electric Tool/Spur Gear /Sun Gear /Gear for Reducer Gearbox/Sintered Pinion helical bevel gear

Product Description

ISO/TS16949 OEM gear 

Product Name pump rotor& Stator, gear
Material iron powder/Stainless steel/Cooper/Nickel
Technology Sintering – Powder Metallurgy
Certificate ISO9001/TS16949
Process Flow Powder mixing – Forming – Sintering – Oil impregnation – Sizing -Ultrasonic cleaning – Steam oxidation – Oil impregnation – Final inspection – Packing
Surface Treatment High frequency quenching, oil impregnation
Apperance No crumbling, cracks, exfoliation, voids, metal pitting and other defects
Application Industry,Vehicle, Power Tools, Motor, Bicycle, Electrombi

Why Powdered Metals?

Significant cost savings.
Create complex or unique shapes.
No or minimal waste during production.
High quality finished products.
Strength of materials

 

Certification

A trained, qualified, and dedicated work force

  • Engineering is our strength – we will help your designers convert your parts to cost-effective powdered metal parts.
  • Every employee is trained to a standard of excellence.

Quality is designed into the process

  • Consistent and committed attitude to quality first.

Critical characteristics are measured and controlled using the latest statistical methods

  • Quality is always the first priority.
  • Our subcontractors are held to the same high standards.

Company Profile
JINGSHI established in 2007                                               
Manufacturer & Exporter                             
Exacting in producing powder metallurgy gears and parts    
Passed ISO/TS16949 Quality Certificate                  
Advanced Equipment                                
Numbers senior R & D engineers and Skilled operators      
Precise Examination Instruments.                        
Strict Quality Control                                 
With the “More diversity, More superior, More professional ” business purposes, we are committed to establish long-term friendship and CHINAMFG relationship with domestic and international customers to create a bright future .
 
Please Send us your 2D or 3D drawings to start our cooperation!

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Sintered Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

How do you ensure proper alignment when connecting spur gears?

Proper alignment is crucial when connecting spur gears to ensure smooth and efficient gear operation. Here’s a detailed explanation of how to ensure proper alignment when connecting spur gears:

  • Visual Inspection: Start by visually inspecting the gears, gear shafts, and associated components for any visible misalignment or damage. Look for signs of wear, uneven tooth engagement, or any abnormalities that may affect alignment.
  • Shaft Alignment: Align the gear shafts accurately before connecting the gears. Proper shaft alignment ensures that the gears are positioned correctly relative to each other. This can be achieved through various alignment techniques, such as using alignment tools, laser alignment systems, or measuring devices. The goal is to ensure parallel or coaxial alignment between the gear shafts.
  • Backlash Adjustment: Adjust the backlash between the gear teeth to achieve proper alignment. Backlash refers to the slight gap between the mating teeth of gears. It is important to maintain an appropriate amount of backlash to allow for smooth gear engagement and minimize the risk of binding or jamming. Follow the manufacturer’s recommendations or industry standards for the recommended backlash range and adjust as necessary during gear installation.
  • Check Gear Mesh: Verify the gear meshing pattern to ensure proper alignment. The gear teeth should mesh smoothly and evenly without any signs of excessive or uneven contact. If there are indications of improper meshing, such as concentrated contact on a specific area of the tooth, it may imply misalignment or other issues that need to be addressed.
  • Shim Adjustment: If misalignment is detected, shimming can be employed to correct it. Shimming involves placing thin metal shims between the gear and the shaft to adjust the positioning and alignment. Shims are available in various thicknesses, allowing for precise alignment adjustments. Careful measurement and selection of the appropriate shim thickness can help achieve the desired alignment.
  • Tightening Bolts: When connecting the gears to the shafts, ensure that the bolts or fasteners are tightened evenly and to the recommended torque specifications. Uneven tightening can introduce misalignment or uneven load distribution, leading to gear misalignment and potential issues.
  • Post-Installation Verification: After connecting the gears, perform a final verification of the alignment. Rotate the gears manually or through the gear system’s intended operation and observe the gear meshing behavior. Look for any signs of abnormal noise, vibration, or irregular tooth engagement. If any issues are detected, further adjustments or inspections may be necessary.
  • Regular Maintenance: Implement a proactive maintenance program that includes periodic inspections and alignment verification. Gears can experience wear or misalignment over time due to factors such as load variations, temperature changes, or prolonged operation. Regular maintenance allows for early detection and correction of alignment issues, ensuring optimal gear performance and longevity.

Proper alignment is essential for maximizing the efficiency, durability, and reliability of spur gear systems. By following these alignment practices and considering the manufacturer’s recommendations, industry standards, and expert advice, you can ensure proper alignment when connecting spur gears.

It’s important to note that the specific alignment techniques and procedures may vary depending on the gear system’s design, size, application, and other factors. Consulting with gear manufacturers, engineers, or alignment specialists can provide further guidance on the recommended alignment practices for your specific gear system.

spur gear

Are spur gears suitable for high-torque applications?

Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:

Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:

  • Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
  • Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
  • Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
  • Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
  • Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
  • Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.

While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.

In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.

Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.

spur gear

How do spur gears contribute to power transmission?

Spur gears play a crucial role in power transmission due to their specific design and tooth engagement. Here’s a detailed explanation of how spur gears contribute to power transmission:

  1. Direct Tooth Engagement: Spur gears have straight teeth that mesh directly with each other. This direct tooth engagement ensures efficient transfer of power from one gear to another. As the driving gear rotates, its teeth come into contact with the teeth of the driven gear, enabling the transfer of rotational motion and torque.
  2. Uniform Load Distribution: The teeth of spur gears distribute the transmitted load evenly across the gear surfaces. The straight, parallel teeth provide a larger contact area compared to other gear types, resulting in improved load-carrying capacity and reduced stress concentration. This uniform load distribution helps prevent premature wear and failure of the gears, ensuring reliable power transmission.
  3. Efficiency: Spur gears are known for their high efficiency in power transmission. The direct tooth engagement and parallel shaft arrangement minimize energy losses during rotation. The teeth mesh smoothly, resulting in minimal friction and reduced power dissipation. This efficiency is beneficial in applications where maximizing power transfer and minimizing energy waste are crucial.
  4. Speed and Torque Conversion: Spur gears allow for speed and torque conversion between the driving and driven shafts. By using gears with different numbers of teeth, the rotational speed and torque can be adjusted to match the requirements of the application. For example, a small gear driving a larger gear will result in a higher torque output at a lower speed, while a larger gear driving a smaller gear will result in a higher speed output at a lower torque.
  5. Directional Control: The arrangement of spur gears can be used to control the rotational direction of the driven shaft relative to the driving shaft. By meshing gears with opposite orientations (e.g., one gear with clockwise teeth and another gear with counterclockwise teeth), the direction of rotation can be reversed. This directional control is essential in applications where the desired motion needs to be reversed or changed.
  6. Multiple Gear Configurations: Spur gears can be combined in various configurations to form gear trains, allowing for complex power transmission systems. Gear trains consist of multiple gears meshing together, with each gear contributing to the overall power transmission. Gear trains can alter speed, torque, and direction, providing flexibility in adapting power transmission to specific requirements.
  7. Compatibility with Other Components: Spur gears are compatible with a wide range of other mechanical components, such as shafts, bearings, and housings. This compatibility allows for easy integration into different systems and machinery. Spur gears can be mounted on shafts using keyways, set screws, or other mounting methods, ensuring secure and reliable power transmission.

Overall, spur gears are essential in power transmission systems due to their direct tooth engagement, uniform load distribution, high efficiency, speed and torque conversion capabilities, directional control, compatibility with other components, and the ability to form complex gear trains. These characteristics make spur gears a versatile and widely used choice for transmitting power in various applications across industries.

China Professional ISO/Ts16949 OEM Sintered Gear for Electric Tool/Spur Gear /Sun Gear /Gear for Reducer Gearbox/Sintered Pinion helical bevel gearChina Professional ISO/Ts16949 OEM Sintered Gear for Electric Tool/Spur Gear /Sun Gear /Gear for Reducer Gearbox/Sintered Pinion helical bevel gear
editor by CX 2023-09-18